
ACM Reference Format
Wong, S., Lin, W., Hung, C., Huang, Y., Lii, S. 2013. Radial View Based Culling for Continuous Self-Collision
Detection of Skeletal Models. ACM Trans. Graph. 32, 4, Article 114 (July 2013), 10 pages.
DOI = 10.1145/2461912.2461951 http://doi.acm.org/10.1145/2461912.2461951.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
Copyright © ACM 0730-0301/13/07-ART114 $15.00.
DOI: http://doi.acm.org/10.1145/2461912.2461951

Radial View Based Culling for Continuous Self-Collision Detection
of Skeletal Models

Sai-Keung Wong Wen-Chieh Lin Chun-Hung Hung Yi-Jheng Huang Shing-Yeu Lii

National Chiao Tung University, Taiwan

(a) (b) (c) (d) (e)

Figure 1: The major procedures of our method: (a) Input of a deforming mesh with a skeleton; (b) Clustering triangles based on the skeleton;
(c) A radial view test from an observer primitive (an enlarged view of the dashed region in (b)); (d) Culling results. Potentially colliding
triangles are colored as red; (e) Our method works better for observer points lying inside the mesh, but it can tolerate some observer points
lying outside the mesh. Negatively oriented triangles are colored as blue.

Abstract

We present a novel radial-view-based culling method for continu-
ous self-collision detection (CSCD) of skeletal models. Our method
targets closed triangular meshes used to represent the surface of a
model. It can be easily integrated with bounding volume hierar-
chies (BVHs) and used as the first stage for culling non-colliding
triangle pairs. A mesh is decomposed into clusters with respect to
a set of observer primitives (i.e., observer points and line segments)
on the skeleton of the mesh so that each cluster is associated with
an observer primitive. One BVH is then built for each cluster. At
the runtime stage, a radial view test is performed from the observer
primitive of each cluster to check its collision state. Every pair of
clusters is also checked for collisions. We evaluated our method on
various models and compared its performance with prior methods.
Experimental results show that our method reduces the number of
the bounding volume overlapping tests and the number of poten-
tially colliding triangle pairs, thereby improving the overall process
of CSCD.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality;

Keywords: continuous self-collision detection, deformable
model, view test, skeleton

Links: DL PDF

1 Introduction

To realistically simulate deformable models, it is critical to handle
the self-collision detection and response problems. Collision detec-
tion for deformable models has thus received much research inter-
est and many elegant methods have been proposed [Teschner et al.
2005]. Most of these methods rely on bounding volume hierarchies
(BVHs) for accelerating the collision detection process. However,
they rarely utilize higher-level geometrical information when con-
structing the BVHs and hence may spend too much time on check-
ing adjacent polygons of which a large portion do not collide. This
problem can be illustrated by considering a simple sphere. The sur-
face of the sphere is represented by a closed triangular mesh which
does not collide with itself. However, each triangle is checked with
its neighboring triangles in the BVH.

It is apparent that building a BVH according to the topological
structure of deformable models would greatly improve the culling
efficiency of self-collision detection since there is movement corre-
lation between a deformable model’s structure and its surface poly-
gons. A good choice of such topological structure for deformable
models is a skeleton, which is widely used as a representation of
the structure of a geometrical model in computer graphics, image
processing, character animation and model retrieval [Sundar et al.
2003].

In this paper, we propose an efficient method that accelerates the
continuous self-collision detection (CSCD) process for deformable
closed models embedded with skeletons. We focus on skeleton-
driven animation, such as man-made and simulated animation. For
example, our method can be used to detect self-collision events
in the skinning process by hinting animators when to adjust bone
weights for skinning.

The intuition of our method is based on a key observation: Given
a closed 2-manifold mesh, if there exists a point such that all poly-
gons of the mesh are fully visible from the point, then there is no
self-collision. We develop a "view" test based on the Jordan Sur-
face Theorem [Kopperman et al. 1991] for efficiently determining
the collision state of a deformable model driven by a skeleton. Our
method performs better when the entire skeleton or most of its parts

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

http://portal.acm.org/ft_gateway.cfm?id=2461951&type=pdf
http://doi.acm.org/10.1145/2461912.2461951

are inside the model during deformation. To check for potential
collisions based on the view tests, points are placed on the skele-
ton. We call these points observer points and the view test radial
view test. The radial view test is based on evaluating the facing di-
rections of the polygons w.r.t. the observer points. If the radial view
test passes, the mesh does not collide with itself. In conventional
BVH-based methods, the deformable model is usually decomposed
into several parts of which the bounding volumes overlap with each
other. This usually increases the number of bounding volume over-
lapping tests and other computational costs. On the other hand, the
radial view test fails if there are back facing polygons w.r.t. the ob-
server points. In this case, further processing is required to evaluate
the collision status of the mesh in our method.

To efficiently perform the radial view test, the mesh is decomposed
into clusters based on the skeleton such that each cluster is associ-
ated with an observer primitive (i.e., point or line segment). Intra-
cluster check (based on the radial view test) and inter-cluster check
(using a hierarchical-based method) are then employed to collect
the potentially colliding triangle pairs. We evaluated our method
on various deformable models with skeletons. Our experimental re-
sults show that our method culls away non-colliding triangle pairs
efficiently and reduces the number of bounding volume overlapping
tests.

The major contributions of our work are: 1) A novel skeleton-aware
technique is presented for decomposing a closed 2-manifold trian-
gular mesh into clusters, which are used for culling non-colliding
feature pairs. 2) A novel radial view test is proposed for efficiently
determining the collision state of the mesh. 3) A method to com-
pute inter-cluster orphan sets is proposed which further culls adja-
cent triangle pairs during the inter-cluster check.

2 Related Work

Self-collision techniques are widely applied in simulating breakable
models [Larsson and Akenine-Möller 2006], articulated rigid bod-
ies [Redon et al. 2002], cloth [Bridson et al. 2002], character anima-
tion [Capell et al. 2002; Baran and Popović 2007], and deformable
tetrahedron models [Tang et al. 2011c]. In [Zheng and Doug 2012],
an affine-invariant Laplacian based energy model is proposed for
precomputing a set of certificates. At the runtime stage, the de-
formation energy is computed for determining whether or not the
sub-meshes are free of collision.

Bounding Volume Hierarchies. Bounding volume hierarchies are
employed extensively for rigid and deformable models. BVHs with
several different bounding volume types have been proposed, such
as K-DOPs, axis-aligned bounding box and sphere [Teschner et al.
2005]. For models that may only deform partially, lazy update
methods are proposed such that the BVHs are updated only when
necessary, e.g., kinetic bounding volumes [Zachmann and Weller
2006]. On the other hand, for models that may severely deform,
the BVHs are restructured so as to improve culling effectiveness,
such as using the dynamic bounding volume hierarchy [Larsson and
Akenine-Möller 2006]. These techniques can efficiently cull away
distant triangle pairs, but may spend too much time on checking
non-colliding triangle pairs that are adjacent.

Normal Cone-Based Culling Methods. Volino and Magnenat-
Thalmann [1994] proposed a culling method for discrete self-
collision detection based on mesh regularity. The method computes
the normal cones of triangles and perform contour tests for clusters
of the mesh. Later on, the method was extended for continuous col-
lision detection in [Mezger et al. 2003; Wong and Baciu 2005; Tang
et al. 2009a]. The idea was further extended in [Schvartzman et al.
2009] for handling reduced deformable models. Schvartzman et al.
[2010] proposed an efficient data structure based on star contours

for performing contour tests in discrete self-collision detection. In
practice, the contour tests are usually ignored due to the expensive
projection and intersection operations [Schvartzman et al. 2010].

Elementary Test Processing. In the elementary test processing,
the feature pairs (vertex-triangle and edge-edge) of a potentially
colliding triangle pair are processed for computing the first time of
contact. Some techniques assign each vertex and each edge of the
mesh to one of its adjacent triangles so as to eliminate the duplicate
tests for feature pairs [Wong and Baciu 2006; Curtis et al. 2008]. A
filtering technique based on deforming non-penetration filters [Tang
et al. 2010], is employed for culling the non-coplanar feature pairs.
There is a variety of culling techniques that are proposed in [Tang
et al. 2011a; Zhang and Kim 2012].

GPU-Based and Parallel Techniques. Early GPU-based meth-
ods rasterize models onto colour/stencil/depth buffers for collision
checks [Knott and Pai 2003]. Govindaraju et al. [2005] improved
the performance of collision detection by applying visibility-based
culling techniques to the chromatic decomposition of triangle
meshes. Readers are also referred to the work on employing mul-
ticore CPUs and GPUs for collision detection, such as [Kim et al.
2009; Tang et al. 2011b].

Specific Model Types. Methods for better handling collision detec-
tion of specific types of models have also been suggested. Barbič
and James [2010] make use of vertex movement constraints in re-
duced deformable models to precompute sets of potentially collid-
ing parts, called certificates. Their results show that the cost spent
on inter-collision and self-collision are comparable. For collision
detection applied to the skin of characters, Capell et al. [2005] pro-
posed to keep track of active nodes. This method particularly ben-
efits collisions around creases. It imposes the assumption that col-
lisions occurring in the near future will be in the neighborhood of
the collision seeds. A collision detection method targeting spher-
ical blend skinning can be found in [Kavan et al. 2006] in which
bounding spheres are adopted for bounding the models.

3D Guarding Problem. Our method was inspired by the 3D guard-
ing problem. In solving a 3D guarding problem, a minimal set of
points is computed so that the entire 3D mesh is visible from this
set of points. Yu and Li [2011] proposed the progressive integer
linear programming algorithm to tackle the 3D guarding problem.
Our method proposes the use of skeleton features. We first decom-
pose the mesh into clusters and then perform a radial view check
on each cluster. Yu and Li’s method cannot be directly applied to
our problem because a deformable model may change shape and
the computed 3D guarding points may not cover the entire surface
of the model during deformation.

3 Theoretical Basis and Algorithm Overview

Our major idea is to decompose a closed 2-manifold triangular
mesh into clusters based on its skeleton where each cluster is as-
sociated with an observer primitive (point or line segment). Ac-
cording to the Jordan Surface Theorem [Kopperman et al. 1991],
we develop a radial view test for checking the collision state of
each cluster separately. In the following, we describe the notations,
definitions, intuitive concepts and overview of our method.

Notations and Definitions: A deformable closed 2-manifold trian-
gular mesh is denoted as the triplet M = (V, E, F), where V is a
set of vertices, E is a set of edges, and F is a set of triangles. As-
sume that within a time interval [0,Δt], the mesh M deforms and
the velocity of each vertex of M is a constant, where Δt is the time
step size. Thus, the position of a vertex (or a point) i within the time
interval can be expressed as pi(t) = pi(0) + ṽit, where pi(0) is
the position of the vertex at the beginning of the time interval, ṽi

114:2 • S-K. Wong et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

is the velocity of i and t ∈ [0,Δt]. The normal vector nT (t) of
a triangle T (p0(t),p1(t),p2(t)) points to the exterior of the mesh
M within the time interval. The normal vector nT (t) is defined as−−−−−−−→
p1(t)p0(t) × −−−−−−−→p2(t)p0(t). The shorthand −−−→pipk is used to denote
pi − pk in this paper.

A feature is a vertex, an edge or a triangle. Two triangles are ad-
jacent if they share at least one vertex and non-adjacent otherwise.
Similarly, a feature pair is adjacent if they share at least a common
vertex and non-adjacent otherwise. A cluster of triangles (short:
cluster) is a collection of triangles and the collection of vertices
and edges incident to the triangles. Two clusters Ck and Cl are
adjacent if they share at least one vertex. For a deformable model
represented by a triangular mesh, self-collision occurs if two non-
adjacent features collide with each other. In continuous collision
detection, there exist two kinds of collision events: vertex-triangle
and edge-edge. For two non-adjacent triangles, there are fifteen fea-
ture pairs: six vertex-triangle and nine edge-edge pairs. A skeleton
is denoted S = (Sv, Se), where Sv is the set of skeleton joints and
Se is the set of skeleton bones.

Classification of Triangles. Let q be an observer point defined
on the skeleton of the deformable mesh. The position of q is a
function of time in the reference frame of the deformable mesh.
We define a time-dependent characteristic function φ(T, q, t) for a
triangle T (p0(t),p1(t),p2(t)) with respect to q. We classify the
triangle into one of the three categories based on the sign of the
characteristic function: (1) positively oriented if φ(T, q, t) > 0
for all t ∈ [0,Δt]; (2) negatively oriented if φ(T, q, t) < 0 for
all t ∈ [0,Δt]; (3) uncertain otherwise. For an arbitrary observer
point q, we have

φ(T, q, t) := nT (t) · (p0(t)− q(t)). (1)

The characteristic function is a cubic function in general (see the
supplemental materials for details). Note that the signs of nT (t) ·
(pi(t)− q(t)) are the same for i = 0, 1, 2.

q

ray ray
positively
oriented tri.

q
negatively
oriented tri.(a) (b) (c)

Figure 2: A ray intersects the triangles of a closed mesh. The
ray leaves the mesh when intersecting with a positively oriented
triangle, and enters the mesh when intersecting with a negatively
oriented triangle. Leaving and entering are always interleaved, i.e.
any intersection after leaving must be entering, and vice versa. The
black arrows represent the outer normals of the triangles. (a) a
planar slice of the closed mesh. (b) a ray is cast from a point lying
inside the mesh. (c) a ray is cast from a point lying outside the
mesh.

Collision Conditions. Assume that the mesh M does not have any
self-intersection initially. Let dr denote the direction of a ray r. If
the ray r hits a positively oriented triangle, i.e., dr ·nT (t) > 0, then
the ray leaves the mesh. If a ray hits a negatively oriented triangle,
i.e., dr · nT (t) < 0, then the ray enters the mesh.

According to the Jordan Surface Theorem [Kopperman et al. 1991],
a closed surface separates the three-dimensional space into two con-
nected components. Hence, a ray cast from an interior (exterior)
point of a mesh intersects the mesh M an odd (even) number of
times if the ray is not parallel to any triangles. Furthermore, the

ray intersects the mesh in an interleaving leave/enter pattern. Fig. 2
shows two examples.

Given the mesh M , it deforms within the time interval [0,Δt] and
q is any observer point of the mesh. Assume that the first collision
event occurs between two non-adjacent features f1 and f2 (vertex-
triangle or edge-edge). Furthermore, they collide at a point pc at
time tc. There exist two different triangles T1 and T2 incident to
f1 and f2, respectively, such that either of the following two col-
lision conditions holds within the time interval: (1) one triangle is
positively oriented w.r.t. q and the other is negatively oriented w.r.t.
q; (2) at least one of the triangles is uncertain w.r.t. q. This can
be realized by casting a ray passing q(tc) and pc (see Fig. 3), i.e.,
dr = pc − q(tc). Let Π(f1) denote the set of triangles incident
to f1 and Π(f2) denote the set of triangles incident to f2. The ray
intersects at least one triangle of Π(f1) and at least one triangle
of Π(f2). If all of the triangles of Π(f1) ∪ Π(f2) were positively
(negatively) oriented w.r.t. q within the time interval, the ray would
leave (enter) the mesh at pc twice consecutively. This is not possi-
ble as the mesh M is a closed 2-manifold mesh. The proof can be
found in the supplemental materials.

pc

(b)

q(tc)q pcneg. oriented
pos. oriented

()()

q

()(b) uncertain (c)(a) q(tc)

Figure 3: Two collision conditions for a closed deformable mesh.
The mesh is viewed from an observer point q. (a) The mesh is free
of collision. In (b) and (c), the mesh collides with itself at a point
pc. In (b), at least one triangle is positively oriented w.r.t. q and at
least one triangle is negatively oriented w.r.t. q. In (c), at least one
triangle is uncertain w.r.t. q.

Collision Culling. We can exploit the above two collision condi-
tions to collect the potentially colliding triangle pairs. Given an ob-
server point q, we can classify the triangles of the mesh within the
time interval into three sets: H+(q), H−(q), and Hu(q), which
denote the set of triangles that are positively oriented, negatively
oriented, and uncertain w.r.t. q, respectively. Based on the colli-
sion conditions, we only need to check the triangles of the two set
pairs (H+(q), H−(q)), (H+(q) ∪ H−(q) ∪ Hu(q), Hu(q)) =
(F, Hu(q)) for collision. In other words, we check the triangles
between H+(q) and H−(q) as well as the triangles between F and
Hu(q) in each time step.

To efficiently cull potentially colliding triangles, we would like to
reduce the number of triangles that are negatively oriented or uncer-
tain. It is obvious that there may be many uncertain and negatively
oriented triangles if only one observer point is used since the mesh
surface may have many concave parts. This problem can be alle-
viated by decomposing the mesh into clusters and each cluster is
associated with an observer point. A good place to put observer
points is the skeleton of the mesh since the skeleton usually lies in-
side the mesh when the model deforms. It also captures the main
structure of the mesh. We therefore exploit the skeleton for placing
the observer points. By appropriately computing multiple observer
points on the skeleton of the mesh, we can reduce the number of
negatively oriented and uncertain triangles in each cluster. For ex-
ample, an observer point can be placed at a joint or in a bone of
the skeleton. The mesh is then decomposed into clusters with re-
spect to the observer points. Besides checking (H+(q), H−(q))
and (F, Hu(q)) of each cluster with an observer point q for col-
lision, we should also check the triangles between every pair of

Radial View Based Culling for Continuous Self-Collision Detection of Skeletal Models • 114:3

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

clusters. Fig. 4 illustrates how our method detects the first colliding
feature pairs for two examples. In Case (1), there is one cluster. The
model deforms within the time interval and the two triangles T1 and
T2 collide with each other. Before the model collides with itself, all
the triangles are positively oriented w.r.t. the observer point of the
cluster within the time interval. At the first time of contact, the two
triangles are uncertain. Hence, they form a potentially colliding
triangle pair and this pair is handled in the elementary test process-
ing. In Case (2), there are two clusters C1 and C2. The model
deforms and then the vertex p1 collides with T4. All the triangles
are positively oriented w.r.t. their observer point within the time
interval. Our method can still collect the colliding vertex-triangle
pair (p1, T4). This is because T1 and T4 belong to different clusters
and they form a potentially colliding pair in the inter-cluster check.

p1 pT T T2

q

p0
p1 p2

p1 p2

C1

C

Case 1

Case 2
T1
T3 T4

T1 T2

T1
T2

T3

T2
T4

T1

T2

deform

qC2

Figure 4: Two examples for illustrating how our method detects the
first colliding feature pairs of two deforming meshes. The vertices
and the observer points are shown in different colors. In Case (1),
there is one cluster. The triangle T1 collides with another triangle
T2. In Case (2), there are two clusters. The vertex p1 collides with
triangle T4.

Algorithm Overview. We summarize our method in Algorithm 1.
At the preprocessing stage, we perform cluster decomposition, clus-
ter boundary refinement, cluster reduction, BVH construction, and
finally compute inter-cluster orphan sets. At the runtime stage,
we refit the bounding volumes of BVH (BVH refit) and classify
the triangles of each cluster and progressively update the cluster
BVHs (Radial-View update). During the intra-cluster check, a ra-
dial view test is performed to check collisions within each cluster. If
there are uncertain triangles or negatively oriented triangles, further
processing is required to collect the potentially colliding triangle
pairs (PCTPs). During the inter-cluster check, a hierarchical-based
method is performed to collect the PCTPs between every pair of
clusters. Finally, elementary tests are performed.

4 Preprocessing Stage

In the preprocessing stage, we decompose a given mesh
M(V, E, F) into a disjoint set of clusters {C1, C2, · · · , CN} such

that F = ∪N
k=1Ck (Fig. 5) and construct a BVH of these clus-

ters. Each cluster Ck is associated with an observer point denoted
as qk. The desirable goals for clustering are: 1) The number of the
positively oriented triangles should be the majority within a clus-
ter. 2) The triangles of a cluster Ck should be visible and close to
qk. 3) The number of clusters is small so as to reduce the cost of
the inter-collision check. For the first and second goals, we adopt a
heat diffusion process in conjunction with the distance field to de-
compose the mesh. For the third goal, we perform cluster reduction
to merge the adjacent clusters.

4.1 Cluster Decomposition

A desirable property of the clusters is that their triangles should
move along with the observer points. In this way, the orientations

Algorithm 1 Collision Detection Process

Begin Preprocessing Stage
Perform cluster decomposition
Perform cluster boundary refinement
Perform cluster reduction
Build BVHs of clusters
Compute inter-cluster orphan sets
End Preprocessing Stage

Begin Runtime Stage
for each time step do

Refit BVHs
Radial-view update: classify triangles; update cluster BVHs
for each cluster C do

if radial view test for C is not passed then
Perform intra-cluster check for C

end if
end for
Perform inter-cluster check
Perform elementary tests

end for
End Runtime Stage

Figure 5: Cluster decomposition process. From left to right: clus-
ters obtained after heat diffusion, cluster boundary refinement, and
cluster reduction.

of the triangles of a cluster w.r.t. the corresponding observer point
do not change often. This desirable property is in fact similar to the
requirements for computing the bone weights in skin deformation
[Baran and Popović 2007], where the bone weights of each vertex
indicate how much the movement of the bones affect the movement
of the vertex. Hence, we adopt the heat diffusion scheme [Baran
and Popović 2007] to compute bone weights of vertices. Then we
decompose the mesh into clusters based on the bone weights and
compute observer points.

The heat diffusion scheme works as follows. Let wj be the vector
of all weights of bone j. wj is obtained by solving the equilibrium

equation for the heat diffusion process: ∂wj

∂t
= Δwj + H(rj −

wj), where Δ is the discrete surface Laplacian, rj is a vector with

rj
i = 1 if the nearest bone to vertex i is j; otherwise, rj

i = 0.

H is a diagonal matrix with diagonal elements Hii = c/(d(i))2

if vertex i is visible from the bone and Hii = 0 otherwise, where
d(i) is the distance from a vertex i to the nearest bone, computed
from the distance field. c is a free parameter. A vertex i is visible
from the bone if the shortest line segment from the bone to the
vertex lies inside the volume of the mesh. In [Baran and Popović
2007], an adaptive depth field [Frisken et al. 2000] is employed
for checking the visibility status between a bone and a vertex. The
method for solving the equilibrium equation can be found in [Baran
and Popović 2007]. We performed preliminary experiments and
found that similar results were obtained for c between 1.0 and 3.0.

After computing the bones weights of each vertex, we assign the

114:4 • S-K. Wong et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

vertex to the bone with the highest bone weight. Then, we assign
each triangle to a bone as follows: (1) If there are at least two ver-
tices of a triangle assigned to the same bone, the triangle is assigned
to the bone. (2) If the three vertices of a triangle are assigned to
three different bones, a candidate set is formed by those bones that
the triangle is positively oriented to. The triangle is then assigned
to the bone with the highest weight in the candidate set. If a trian-
gle T is not assigned to any bone, we repeatedly check its adjacent
triangles and assign T to the bone of any of its adjacent triangles
until all the triangles are assigned. Finally, an observer point is put
on each bone and the triangles assigned to the bone are assigned to
the observer point. In our experiment, an observer point is placed
at one of the joints of a bone.

4.2 Cluster Refinement

The boundary of two adjacent clusters may be a zigzag shape as
shown in Fig. 6. We want to reduce the number of edges shared by
every pair of adjacent clusters so as to make the boundaries smooth.

Let Γ̃ be the set of all the boundary edges between two clusters Ck

and Cl before refinement. We reassign the triangles (in Ck and

Cl) incident to any edges in Γ̃. The cluster boundary refinement
is performed locally as we do not want the new boundary to drift
away from the original boundary. To do so, we sort the triangles

incident to the edges in Γ̃ and inspect these triangles one by one.
If a triangle T is adjacent to two triangles belonging to the same
cluster, T is assigned to that cluster. An example is shown in Fig. 6
and Γ is the boundary edges of Ck and Cl after refinement.

CkCk
�~ �

Cl

Figure 6: Boundary refinement for reducing the number of shared
edges of the adjacent clusters.

4.3 Cluster Reduction

The idea of our cluster reduction method is illustrated in Fig. 7.
Two adjacent clusters can be merged into a single cluster to re-
duce the number of clusters. However, the computational cost of
the intra-cluster check for the merged cluster may increase if the
number of negatively and uncertain triangles increases. A simple
method is that two adjacent clusters Ck and Cl are merged if most
of the triangles of Π(Ck) ∪ Π(Cl) are positively oriented w.r.t. q,
where Π(Ck) and Π(Cl) are the set of triangles in Ck and Cl, re-
spectively; and q is one of the observer points of Ck and Cl. This
simple method works well if the cluster does not deform w.r.t. q.
This is because the orientation of each triangle of the cluster does
not change. However, if the model deforms, the incident angle for
the triangle should also be considered for merging. The incident
angle is defined for measuring the deviation of the normal vector of
the triangle from the viewing direction with respect to q. Specifi-
cally, the incident angle θ of a triangle1 T (p0,p1,p2) is defined as
the angle between the normal vector of the triangle and the vector
g − q, where g = p0+p1+p2

3
.

The larger the incident angle for a triangle T , the more likely T will
change orientation. With the consideration of the incident angle,
the orientations of the triangles do not change much before and
after merging. A triangle is admissible w.r.t. an observer point q

1We omit t for the time-varying variables within the same time interval

hereafter unless it is needed to specify the meaning.

if it is positively oriented w.r.t. q and its incident angle is less than
a given threshold ε. Let the number of the admissible triangles be

N+. If N+

|Π(Ck)∪Π(Cl)| ≥ β for q, then the two clusters Ck and Cl

are merged, where the ratio β is a user defined value. The observer
point of the new cluster is q. If the condition is satisfied by both
observer points, we select the observer point with higher number of
branches2 as the new observer point. In this way, we can reduce the
number of clusters. In our experiments, we found that our method
performed well for ε = 80o and β = 0.9.

�
negatively

ray : incident
angle

�

q1 q2 q2 q1

negatively
oriented

angleg

q1 q2 q2 q1

Figure 7: Cluster reduction for two clusters. The arrows indicate
the directions of the normal vectors of the triangles. Left: q1 and q2

are the observer points of two clusters. Middle: If q2 is selected as
the new observer point, there are negatively oriented triangles after
merging two clusters; Right: If q1 is selected as the new observer
point, then all the triangles are positively oriented w.r.t. q1.

4.4 BVH Construction

C3C4 |H
_
|

Global�BVH

C

C2

4 |H |
|Hu|

C1 C3C2 C4

C1

1 32 4

Figure 8: The global BVH of a model. The model is divided into
four clusters C1, C2, C3 and C4. Each node has two counters for
recording the numbers of elements of H− and Hu, respectively.

After the clusters are refined and reduced, we construct the BVH
of each cluster. We use K-DOP as the bounding volume for its
tightness, but other kinds of bounding volumes can also be used.
The BVH of a cluster is constructed by adopting the median split-
ting scheme in a top-down manner until the leaf nodes are reached.
Each leaf node of the BVH of a cluster contains a triangle. Then
we construct the global BVH of the mesh. We employ again the
median splitting scheme in a top-down manner to divide the clus-
ters into two halves recursively until each node of the global BVH
contains one cluster. Fig. 8 shows the structure of the global BVH.

5 Runtime Stage: Collision Culling

In the runtime stage, we first perform BVH refitting for the global
BVH of the mesh. The global BVH of the mesh is processed in a
bottom-up manner so that the bounding volume of each node tightly
encloses the triangles associated with the node. Notice that after
performing BVH refitting, the BVH of each cluster is also updated
since it is a part of the global BVH. Then intra- and inter-cluster
checks are performed for collecting potentially colliding triangle
pairs.

2Note that an observer point is a joint on a skeleton.

Radial View Based Culling for Continuous Self-Collision Detection of Skeletal Models • 114:5

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

5.1 Intra-Cluster Check

Radial View Test and Triangle Classification for a Cluster C. In
each time step, we classify each triangle of C into two sets H+(C)
and H−(C) using the characteristic function (Eq. 1). Hu(C) is
then computed as Π(C) \ (H+(C)∪H−(C)), where Π(C) is the
set of all triangles in C. Based on the discussion in Section 3, if all
the triangles of C belong to H+(C), we can skip the cluster during
the collision check; Otherwise, two triangles of C may collide with
each other and we need to check pairs of triangles for the two set
pairs (H+(C), H−(C)) and (Π(C), Hu(C)).

BVH Update for Each Cluster. To efficiently collect the po-
tentially colliding triangle pairs for each cluster C, we adopt a
hierarchical-based method. We maintain two counters in each node
of the global BVH to record the numbers of triangles belonging
to H−(C) and Hu(C), respectively (Fig. 8). Changes in the two
counters are propagated all the way to the root. For example, if
a triangle in the leaf node is negatively oriented, the counter for
H−(C) is one and the counter for Hu(C) is zero. If, at a later
point in time, the triangle changes to be uncertain, the counter for
H−(C) becomes zero and the counter for Hu(C) becomes one. In
that case, the counters for Hu(C) and H−(C) in all the ascendant
nodes of the leaf node are also updated correspondingly.

To perform the intra-cluster check for the pair (H+(C), H−(C)),
we traverse down the hierarchy from the root node of the BVH of C
only if the counter of H−(C) is larger than zero. Similarly, to check
for the pair Π(C) and Hu(C), we traverse down from the root of
the BVH of C only if the counter of Hu(C) is larger than zero.
When there are two leaf nodes that are reached, the corresponding
two triangles form a potentially colliding triangle pair.

5.2 Inter-Cluster Check

We perform the hierarchical method for checking collision between
clusters [Klosowski et al. 1998]. Inspired by the orphan set concept
[Tang et al. 2009a], we developed a method that allows us to ignore
adjacent triangle pairs during the inter-cluster check.

…
…

v1
v0

Ck v2

1

… …T0 T1Cl

Figure 9: Inter-cluster orphan set (ICOS). Collision events may
be missed if the adjacent triangle pairs are ignored between two
adjacent clusters Ck and Cl. Consider that the feature pair v0 and
T0 collides. Ignoring the adjacent triangle pairs may fail to detect
the collision events. Hence, (v0, T0) is a member of the ICOS.
Similarly, (v1, T1) and (v2, T1) are also members of the ICOS.

Inter-Cluster Orphan Set (ICOS). To ensure that we can detect
all the colliding feature pairs while skipping the adjacent triangle
pairs during the inter-cluster check, we need to handle some special
cases, as illustrated in Fig 9. Consider a vertex-triangle case (v, T).
The vertex v is shared by a set of triangles which are adjacent to a
triangle T of another cluster. If we ignore the adjacent triangle pairs
involving T , we may miss the collision occurring between v and T .
It is therefore necessary to precompute these kinds of feature pairs
and store them in a set, called the inter-cluster orphan set (ICOS).
At the runtime stage, we need to perform tests for the feature pairs
of ICOS.

Denote Π(f, C) as the set of triangles incident to a feature f and
belonging to a cluster C. Consider two features f1 and f2 such
that f1 and f2 belong to two adjacent clusters C1 and C2, respec-
tively. A feature pair (f1, f2) is assigned to ICOS if the following
two conditions are both satisfied: (1) C1 and C2 are different; (2)
any triangle in Π(f1, C1) is adjacent to a triangle in Π(f2, C2). To
compute ICOS for two adjacent clusters C1 and C2, we check all
the adjacent triangle pairs (T1, T2) along the boundary of the two
clusters, where T1 ∈ C1 and T2 ∈ C2. Then we collect the feature
pairs of all these adjacent triangle pairs that satisfy the two condi-
tions. Assume that the valence of the vertices is less than a given
threshold. Then the running time complexity of computing ICOS
for two adjacent clusters is proportional to the number of triangles
on their boundary.

5.3 Elementary Test Processing

We adopt the method presented in [Tang et al. 2010] for computing
the times of contacts for the potentially colliding triangle pairs. The
feature pairs of ICOS are also processed. To eliminate the duplicate
tests for the feature pairs in the inter-cluster check for non-adjacent
cluster pairs, we adopt the representative-triangle scheme [Curtis
et al. 2008] for its simplicity.

6 Extension to Observer Line Segments

q0
q1

Figure 10: An observer line segment q0q1 is useful for viewing a
model with sharp geometric features. Each vertex is projected to
the closest point on q0q1.

Observer points are more suitable as the observer primitives for
the radial-view test on the clusters with round shape. To handle
clusters with sharp geometric features, we can employ observer
line segments as their observer primitives (Fig. 10). Given an ob-
server line segment q0q1, the characteristic function for a triangle
T (p0,p1,p2) w.r.t. q0q1 is defined as

φ(T, q0q1, t) :=

⎧⎨
⎩

1 if nT (t) · −−−−−−−→pi(t)p
′
i(t) > 0, ∀i ∈ {0, 1, 2}

−1 if nT (t) · −−−−−−−→pi(t)p
′
i(t) < 0, ∀i ∈ {0, 1, 2}

0 otherwise

(2)

where p′i(t) is a point on the line segment q0q1 and it is closest
to pi(t). The characteristic functions are either cubic functions
or rational polynomial functions. Notice that if q0q1 is known to
lie inside the mesh, only one vertex of the triangle is required to
be evaluated for classifying the triangle. In this case, the signs of

nT (t) ·
−−−−−−→
pi(t)p

′
i(t) are the same for i = 0, 1, and 2. Please refer to

the supplemental materials for computing φ(T, q0q1, t) and p′i(t).

We compute observer points and observer line segments as follows.
We adopt the method describe in Section 4.1 for assigning trian-
gles to bones and then determine whether an observer point or line
segment should be created for each bone. Let the two endpoints
(i.e., joints) of the bone be qj and qk. An observer line segment
qjqk is created if the ratio of the negatively oriented triangles at
either observer point is greater than a threshold α and that ratio at
the observer line segment is less than α, then we choose the ob-
server point. The idea is that we want to reduce the number of

114:6 • S-K. Wong et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

Table 1: Model complexities and timing results for preprocessing. |H+|, |H−| and |Hu| are the average number of positively-oriented,
negatively-oriented, and uncertain triangles, respectively. X → Y : X and Y are the numbers of clusters before and after cluster reduction,
respectively.

Depth Field Cluster Boundary Cluster

#Tri. #Vert. |H+| |H−| |Hu| #Clusters Discretization Decomposition Refinement Reduction ICOS (msec)
(sec) (msec) (msec) (msec)

Rope 48440 24222 48354 3 83 199→100 9.0 20 4 6 17
Octopus 47976 23990 46413 572 991 71→40 10.3 10 4 7 14
Urchin 2840 1422 2755 73 12 4→4 23.3 3 0.2 1 8
Man 20000 10002 18342 1051 607 21→16 6.2 3 1 4 9
Box 25088 12546 24758 317 13 33→17 10.7 4 2 4 10
Hand 11208 5606 11000 195 13 20→11 4.19 2 1 3 7

the negatively oriented triangles if qjqk is used as an observer. If
the two conditions are not satisfied, we select the endpoint q with
the highest number of H+(q) as the observer point. We repeatedly
check each of the remaining bones for creating either an observer
line segment or an observer point. α is set to 0.1 by preliminary
experiments.

7 Experimental Results

We performed our experiments on an Intel(R) Core(TM) i7 CPU
870 @ 2.93GHz with 4 GB RAM (one thread was used). Double
floating point precision was used in solving the cubic equations.
The type of the bounding volume is 16-DOPs.

Six animations were used as the testing benchmarks in our exper-
iments: Rope: A rope is dropped onto a hard surface; Octopus:
An octopus moves its legs; Urchin: A spiky surface bends; Man:
A man walks in a circle; Box: A box is twisted; Hand: A hand
motion. In Urchin, the observer line segments were effective due
to its sharp geometric features. The snapshots of the animations are
shown in Fig. 11. All animations but Man were generated by skin
deformation driven by skeletons, which are used as the skeletons in
our approach. Man is obtained from http://people.csail.
mit.edu/drdaniel/mesh_animation/. We only used the
captured mesh data while the skeleton of the character is manually
constructed for each frame. In this case, the deformation of cloth
was not driven by the skeleton.

The complexities of the deformable models in these examples
ranged from 2.8K triangles to 48K triangles as shown in Table 1.
The average number of H+, H−, and Hu triangles across differ-
ent frames in the six animations are listed in Table 1. As predicted,
most of the triangles are in H+. Table 1 also lists the computational
time for each preprocessing task including cluster decomposition,
cluster boundary refinement, and cluster reduction. All the prepro-
cessing tasks can be complete within less than 0.02 seconds except
for cluster decomposition. Cluster decomposition is a lot more ex-
pensive because it performs depth field discretization [Frisken et al.
2000] which takes between 4.19 and 23.3 seconds. In Urchin, the
model consists of many spiky geometric features which slows down
depth field discretization since they cause a lot more cells to be cre-
ated. Computing the ICOS takes less than 0.02 seconds for all the
animations.

Comparison. We compared our method with a K-DOP method
denoted as Base and a modified ICCD method denoted as MCD.
MCD is a modified version of ICCD ([Tang et al. 2009a]), which is
one of the representative techniques in continuous self-collision de-
tection for general deformable models. The major features of MCD
include: (1) Continuous normal cones for grouping triangles; (2)
Procedural representative triangles for eliminating duplicate tests
of feature pairs; (3) Orphan set for handling feature pairs of ad-
jacent triangles; (4) Deforming non-penetration filters (DNPFs)
[Tang et al. 2010]. The difference between MCD and ICCD is

that MCD employs DNPFs which makes it faster than ICCD. MCD
computes continuous normal cones but ignores contour tests. In
Base, the culling method is completely based on the bounding vol-
ume tests. DNPFs are also adopted in Base.

All the methods (ours, Base, MCD) used 16-DOP as their bounding
volume and utilized the median splitting scheme for constructing
the BVH of the models [Heo et al. 2010]. We did not apply any
lazy update schemes or reconstruction techniques for BVHs at the
runtime stage [Larsson and Akenine-Möller 2006]. All the methods
only detect collisions for non-adjacent feature pairs.

We first compare the average number of bounding volume (BV)
tests. Table 2 shows the comparison result. Our method only gen-
erates 18% to 39% of BV tests of Base. When compared to MCD,
we only get 25% to 68%. As our method decomposes deformable
models into clusters, the number of BV overlapping tests is reduced.
Fig. 12(a) shows the number of the BV tests in Rope during the sim-
ulation. Our method performs much fewer BV tests than Base and
MCD because our method ignores clusters with only positively ori-
ented triangles. The fewer BV tests are also due to cluster decom-
position which makes the triangles of each cluster move coherently
such that their orientations do not change often during deformation.

Table 2: The average number of bounding volume overlapping
tests and the ratios.

Ours Ours
Base

Ours
MCDInter-Cluster Intra-Cluster Total

Rope 252K 8K 260K 0.29 0.68

Octopus 98K 255K 353K 0.30 0.42

Urchin 6.9K 5.4K 12.3K 0.22 0.25

Man 64.8K 130.0K 194.8K 0.39 0.53

Box 64.3K 10.2K 74.5K 0.22 0.46

Hand 19.3K 12.1K 31.4K 0.18 0.28

Table 3: The average query time of the collision detection in our
method, speedup factor over Base and MCD, and the culling ratio
over Base in PCTPs.

Query time (msec) Base
Ours

MCD
Ours

Our #PCTP
Base #PCTP

Rope 74.1 6.92x 2.59x 0.08

Octopus 107.2 4.37x 2.12x 0.13

Urchin 3.33 7.57x 3.15x 0.07

Man 59.8 4.31x 2.54x 0.19

Box 16.6 8.03x 1.78x 0.02

Hand 9.9 7.42x 2.35x 0.04

Table 3 shows the average query time of collision detection of our
method and the culling ratio over Base. Our method is up to 8.03
and 3.15 faster than Base and MCD, respectively. The culling ratio,
which is defined as the number of potentially colliding triangle pairs
(PCTPs) of our method divided by that of Base, is less than 10% on
average. These comparisons show that our method effectively culls
away non-colliding triangle pairs. Fig. 12(b) shows the number
of PCTPs in Rope. When a long Rope falls to the ground, the

Radial View Based Culling for Continuous Self-Collision Detection of Skeletal Models • 114:7

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

displacement of the clusters near the ends is larger than the length of
the clusters. This kind of motion induces a large number of PCTPs
in Base. Our method processes the fewest number of PCTPs as
the triangles are grouped into clusters. We do not need to collect
the non-adjacent triangle pairs of a cluster if all the triangles of the
cluster are positively oriented w.r.t. the observer primitive of the
cluster within the time interval.

Table 4 shows the comparison of the computational time at dif-
ferent stages and the average number of PCTPs. The time spent
on BVH updates is almost the same for all the methods since the
BVH node counts are about equal. As for the BVH traversal time
(BVH-TRA), our method outperforms Base and MCD in all the six
benchmarks. For example, the BVH-TRA of our method is reduced
by 63% (Man) to 81% (Hand) of that of Base, and reduced by 43%
(Rope) to 77% (Urchin) of MCD’s. In the elementary test process-
ing time (ETP), our method also outperforms the other two methods
in all benchmarks. For example, compared to Base, our method re-
duces ETP by 82% (Man) to 98% (Box). Compared to MCD, ETP
is reduced by 58% (Octopus) to 79% (Urchin). Our method for
performing radial-view update (RV-Update) is less than 6.8 msec
in all the benchmarks.

Our method for classifying triangles and propagating triangle set
counts to ascendants in the BVH is efficient. In MCD (or other
CNC-based methods, such as [Tang et al. 2009a]), it is required
to compute the continuous normal cone (i.e., an axis and an open-
ing angle) of each deforming triangle. Then the continuous normal
cones of the internal nodes of the BVH are updated in a bottom-up
manner. In contrast to MCD, our method only needs to determine
the signs of the characteristic functions of the triangles. Neverthe-
less, our method is catered for deformable models with skeletons
while MCD can be applied to general deformable models.

We compared our method with SelfCCD [UNC Gamma Group]
which can be applied for self-collision detection of general de-
formable models. The same set of benchmarks were performed on
the same machine. The speedup factor of our method over SelfCCD
is up to five.

Robustness. Our method does not require very precise skeleton
information nor very smooth skeleton movements. It is preferred
but not required that the most of the skeleton lies inside the model
during the deformation. In fact, the movement of the skeleton in
Man contains many noisy disturbances since they are manually
constructed. To further verify the robustness of our method, we
added random displacements to the joint positions of the skeleton
in each frame. Let r be the radius of the inscribed ball centered
at each joint. A random displacement vector sru was computed
for the joint, where s = 0.1, 0.2 and 0.3 is the magnitude ratio of
the displacement and u is a unit-length random vector. The per-
formance of our method was not affected much by the random dis-
placement. The average difference is less than 5% except Urchin.
In Urchin, the average difference is around 10% due to its spiky
geometric features. We also conducted experiments for observer
points lying outside the mesh by increasing the displacement ra-
tio s, as shown in Fig. 1(e). Let L be the percentages of observer
points subjected to noisy displacement. For L = 20%, the total
time of collision detection increases by 15% and 20% for s = 1.2
and s = 1.4, respectively. Fig. 1(e) shows the skeleton of the rope
when L = 50% and s = 1.4 at a frame.

Limitations. Our method has four limitations. First, the input
model should be a closed 2-manifold mesh. Our method may not
be applied to cloth simulation, fracture simulation, or models with
severe deformation since it is difficult to compute a good skeleton
for cluster decomposition. Furthermore, models with a lot of ge-
ometric detail, causes performance to deteriorate if many observer

(a) (b)

Figure 12: The number of (a) the bounding volume tests and (b)
potentially colliding triangle pairs in each frame in Rope.

primitives are generated during clustering. Second, the culling effi-
ciency of our method may degrade if the observer primitives move
outside the model. In this situation, there may be many negatively
oriented or uncertain triangles. Third, our method may fail to detect
new collisions within a cluster if the cluster intersects itself initially.
This limitation may be resolved by applying the contour test. Nev-
ertheless, our method is still able to detect all the new collisions
between a pair of clusters. Fourth, currently our method utilizes the
skeleton motion for updating the positions of the observer primi-
tives. If the deformation is not driven by a skeleton, we need to
update the observer primitives based on other efficient methods.

Discussion. The computational performance of our method largely
depends on the number of clusters. If the number of clusters in-
creases, time spent on inter-cluster checks usually also increases
but the time spent on intra-cluster checks decreases. We are consid-
ering applying optimization methods to figure out an optimal num-
ber of clusters. We also compared the computational time of our
method with and without performing cluster refinement. We found
that the overall computational time is similar in both cases.

Our method can be easily integrated with other existing techniques
aimed at improving BVH updates, BVH reconstruction, or elemen-
tary intersection tests. For instance, the lazy BVH update schemes
and dynamic bounding volume hierarchies [Zachmann and Weller
2006; Larsson and Akenine-Möller 2006; Schvartzman et al. 2010]
can be employed.

Currently, most of the precomputation time is spent on the dis-
tance field discretization [Baran and Popović 2007] for clustering.
It would be interesting to explore the techniques for fast compu-
tation of distance fields of deformable models, e.g. [Fisher and
Ming 2001]. On the other hand, the depth field computation can
be skipped. To speed up the preprocessing for clustering, we can
compute a seed vertex that is visible w.r.t. an observer primitive and
then perform region growing to compute a cluster. It is a challeng-
ing problem to develop an efficient method for computing the clus-
ters at real time rates. Note that our method can be combined with
parallel processing techniques. For example, the BVH traversal and
elementary test processing can be accelerated with existing tech-
niques such as [Kim et al. 2009; Tang et al. 2009b]. In particular,
parallel culling techniques are reported to be faster than the tech-
nique based on the deforming non-penetration filters [Tang et al.
2011a]. Finally, skeletonization methods, such as that of [Bradshaw
and O’Sullivan 2004], can be used to automatize skeleton genera-
tion of a deformable model.

8 Conclusion

We present a novel radial-view-based culling method for closed de-
formable models that are embedded with skeletons. The heat dif-
fusion process is applied to decompose the deformable models into

114:8 • S-K. Wong et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

Table 4: Average timings and the average number of potentially colliding triangle pairs (#PCTP). Timing items include: BVHU: BVH update;
BVH-TRA: traversal for bounding volume hierarchy; ETP: the elementary test processing time; CNC: computation for continuous normal
cones; and RV-Update: Radial-view update.

Base MCD Ours
BVHU BVH-TRA ETP #PCTP BVHU CNC BVH-TRA ETP #PCTP BVHU RV-Update BVH-TRA ETP #PCTP

(ms) (ms) (ms) (K) (ms) (ms) (ms) (ms) (K) (ms) (ms) (ms) (ms) (K)

Rope 19.2 33.9 459.7 457 19.3 12.8 18.0 142 67.4 19.6 5.9 10.3 38.3 35.4

Octopus 20.6 44.7 402.9 467 20.5 12.5 34.2 160 131 20.2 6.8 12.5 67.7 60.0

Urchin 1.2 2.3 21.7 26.1 1.2 0.7 2.3 6.3 4.9 1.1 0.4 0.53 1.3 1.7

Man 9.4 19.6 228.5 237 9.4 5.4 16.0 121 94.4 9.2 3.0 7.3 40.3 45.8

Box 8.7 14.4 110.2 156 8.8 6.4 8.4 5.9 4.6 8.7 3.0 3.0 1.9 2.9

hand 5.0 7.3 61.2 78.1 5.0 2.9 5.2 10.2 7.8 4.9 1.3 1.4 2.3 3.2

Figure 11: The snapshots of the testing animations.

clusters that are created by employing the observer points and line
segments. Due to this decomposition, the radial-view test can be
used for efficiently determining whether or not a cluster has self-
collisions. The inter-cluster orphan set method helps us cull adja-
cent triangle pair tests between adjacent clusters. Our experimen-
tal results show that our method reduces the number of bounding
volume overlapping tests significantly. Although our method is re-
stricted to models with a provided skeleton, it still covers a pretty
large class of interesting models. Besides skeleton-driven deforma-
tion, our method can also be applied to the characters reconstructed
by motion capture techniques, where a predefined skeleton may ex-
ist but the information associating the mesh to the skeleton in a
physical or geometric way may not be built. On the other hand, for
mesh animation without skeleton, any skeleton extraction method
can be utilized to extract skeletons from the mesh and our method
is still applicable. Furthermore, our method may be applied to de-
formable models simulated by Finite Element Method in which the
models consist of tetrahedra. The observer points can be computed
based on the interior vertices of the models.

There are several avenues for future work. Firstly, the computa-
tion of the distance field is a bottleneck in the preprocessing stage.
The distance field is only used for checking the visibility status of
triangles w.r.t. bones of the skeleton. In our case, we only need
to check for the orientations of triangles w.r.t. observer primitives.
Thus, we would like to develop a fast method for performing cluster
decomposition without using the distance field. Secondly, it would
be interesting to extend our method to handle mesh surfaces with
holes, which for example, could be filled with virtual triangles. Fi-
nally, an efficient method should be developed for updating the po-
sitions of the observer primitives if the deformation of the model
is not skeleton-driven. We are considering to adopt the general-
ized barycentric coordinates. For example, a set of triangles can be
precomputed for each observer primitive. In the runtime stage, the
position of each observer primitive is updated based on the set of
triangles associated with the observer primitive.

Acknowledgements

The authors would like to thank the referees for their insightful
comments and suggestions. The idea of using the generalized
barycentric coordinates for updating observer primitives was cred-
ited to an anonymous referee. We would like to thank I-Ting Fu
for helping make the movie. This work was supported in part by
the National Science Council of ROC (Taiwan) (NSC-101-2221-E-
009-157, NSC-101-2628-E-009-021-MY3) and the UST-UCSD In-
ternational Center of Excellence in Advanced Bioengineering spon-
sored by the Taiwan National Science Council I-RiCE Program un-
der Grant Number NSC-101-2911-I-009-101.

References

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3D characters. ACM Transactions on Graphics 30, 7,
2087–2096.

BARBIČ, J., AND JAMES, D. L. 2010. Subspace self-collision
culling. ACM Transactions on Graphics 29, 3, 81:1–81:9.

BRADSHAW, G., AND O’SULLIVAN, C. 2004. Adaptive medial-
axis approximation for sphere tree construction. ACM Transac-
tions on Graphics 23, 1, 1–26.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics 21, 3, 594–603.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND

POPOVIĆ, Z. 2002. Interactive skeleton-driven dynamic de-
formations. ACM Transactions on Graphics 21, 3, 586–593.

CAPELL, S., BURKHART, M., CURLESS, B., DUCHAMP, T., AND

POPOVIĆ, Z. 2005. Physically based rigging for deformable
characters. In Symposium on Computer Animation, 301–310.

Radial View Based Culling for Continuous Self-Collision Detection of Skeletal Models • 114:9

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

CURTIS, S., TAMSTORF, R., AND MANOCHA, D. 2008. Fast
collision detection for deformable models using representative-
triangles. In Proceedings of the 2008 Symposium on Interactive
3D Graphics and Games, 61–69.

FISHER, S., AND MING, C.-L. 2001. Deformed distance fields for
simulation of non-penetrating flexible bodies. In Eurographics
Workshop on Computer Animation and Simulation, 99–111.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: a general rep-
resentation of shape for computer graphics. In Proceedings of
ACM SIGGRAPH, 249–254.

GOVINDARAJU, N., KNOTT, D., JAIN, N., KABUL, I., TAM-
STORF, R., GAYLE, R., LIN, M., AND MANOCHA, D. 2005.
Interactive collision detection between deformable models using
chromatic decomposition. ACM Transactions on Graphics 24, 3,
991–999.

HEO, J.-P., SEONG, J.-K., KIM, D.-S., OTADUY, M. A., HONG,
J.-M., TANG, M., AND YOON, S.-E. 2010. FASTCD:
Fracturing-aware stable collision detection. In Symposium on
Computer Animation, 149–158.

KAVAN, L., O’SULLIVAN, C., AND ŽÁRA, J. 2006. Efficient
collision detection for spherical blend skinning. In Proceedings
of the 4th International Conference on Computer Graphics and
Interactive Techniques in Australasia and Southeast Asia, 147–
156.

KIM, D., HEO, J., HUH, J., KIM, J., AND YOON, S. 2009.
HPCCD: Hybrid parallel continuous collision detection using
CPUs and GPUs. Computer Graphics Forum 28, 7, 1791–1800.

KLOSOWSKI, J., HELD, M., MITCHELL, J., SOWIZRAL, H., AND

ZIKAN, K. 1998. Efficient collision detection using bounding
volume hierarchies of k-DOPs. IEEE Transactions on Visualiza-
tion and Computer Graphics 4, 1, 21–36.

KNOTT, D., AND PAI, K. 2003. Cinder: collision and interference
detection in real-time using graphics hardware. In Graphics In-
terface, 73–80.

KOPPERMAN, R., MEYER, P., AND WILSON, R. 1991. A Jordan
Surface Theorem for three-dimensional digital spaces. Discrete
& Computational Geometry 6, 2, 155–161.

LARSSON, T., AND AKENINE-MÖLLER, T. 2006. A dynamic
bounding volume hierarchy for generalized collision detection.
Computers & Graphics 30, 3, 450–459.

MEZGER, J., KIMMERLE, S., AND ETZMUSS, O. 2003. Hierar-
chical techniques in collision detection for cloth animation. Jour-
nal of WSCG 11, 2, 322–329.

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2002. Fast
continuous collision detection between rigid bodies. In Com-
puter graphics forum, vol. 21(3), 279–288.

SCHVARTZMAN, S., GASON, J., AND OTADUY, M. 2009.
Bounded normal trees for reduced deformations of triangu-
lated surfaces. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 75–
82.

SCHVARTZMAN, S., PÉREZ, A. G., AND OTADUY, M. A. 2010.
Star-contours for efficient hierarchical self-collision detection.
ACM Transactions on Graphics 29, 3.

SUNDAR, H., SILVER, D., GAGVANI, N., AND DICKINSON, S.
2003. Skeleton based shape matching and retrieval. In Proceed-
ings of the Shape Modeling International, 130–142.

TANG, M., CURTIS, S., YOON, S., AND MANOCHA, D. 2009.
ICCD: Interactive continuous collision detection between de-
formable models using connectivity-based culling. IEEE Trans-
actions on Visualization and Computer Graphics 15, 4, 544–557.

TANG, M., MANOCHA, D., AND TONG, R. 2009. Multi-core
collision detection between deformable models. In SIAM/ACM
Joint Conference on Geometric and Physical Modeling, 355–
360.

TANG, M., MANOCHA, D., AND TONG, R. 2010. Fast continu-
ous collision detection using deforming non-penetration filters.
In Proceedings of the 2010 ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, 7–13.

TANG, C., LI, S., AND WANG, G. 2011. Fast continuous collision
detection using parallel filter in subspace. In ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 71–80.

TANG, M., MANOCHA, D., LIN, J., AND TONG, R. 2011.
Collision-streams: Fast GPU-based collision detection for de-
formable models. In ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games, 63–70.

TANG, M., MANOCHA, D., YOON, S.-E., DU, P., HEO, J.-
P., AND TONG, R. 2011. VolCCD: Fast continuous collision
culling between deforming volume meshes. ACM Transactions
on Graphics 30, 5.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACH-
MANN, G., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., STRASSER, W.,
AND VOLINO, P. 2005. Collision detection for deformable ob-
jects. In Computer Graphics Forum, 61–81.

UNC GAMMA GROUP. SelfCCD: Continuous collision detec-
tion for deforming objects. http://gamma.cs.unc.edu/
SELFCD.

VOLINO, P., AND MAGNENAT-THALMANN, N. 1994. Efficient
self-collision detection on smoothly discretized surface anima-
tions using geometrical shape regularity. In Computer Graphics
Forum, 155–166.

WONG, S.-K., AND BACIU, G. 2005. Dynamic interaction be-
tween deformable surfaces and non-smooth objects. IEEE Trans-
actions on Visualization and Computer Graphics 11, 3, 329–340.

WONG, S.-K., AND BACIU, G. 2006. A randomized marking
scheme for continuous collision detection in simulation of de-
formable surfaces. In Proceedings of the ACM Int’l Conf. on
Virtual Reality Continuum and Its Applications, 181–188.

YU, W., AND LI, X. 2011. Computing 3D shape guarding and star
decomposition. Computer Graphics Forum 26, 3, 1–8.

ZACHMANN, G., AND WELLER, R. 2006. Kinetic bounding vol-
ume hierarchies for deformable objects. In ACM Int’l Conf. on
Virtual Reality Continuum and Its Applications, 14–17.

ZHANG, X., AND KIM, Y. 2012. Simple culling methods for con-
tinuous collision detection of deforming triangles. IEEE Trans-
actions on Visualization and Computer Graphics 18, 7, 1146 –
1155.

ZHENG, C., AND DOUG, J. L. 2012. Energy-based self-collision
culling for arbitrary mesh deformations. ACM Transactions on
Graphics 31, 4.

114:10 • S-K. Wong et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 114, Publication Date: July 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

